Probability: Why do we care?

- Probability helps us by:
 - Allowing us to translate scientific questions into mathematical notation
 - Providing a framework for answering scientific questions
- Later, we will see how some common statistical methods in the scientific literature are actually probability concepts in disguise

What is Probability?

- Probability is a measure of uncertainty about the occurrence of events
- Two definitions of probability
 - Classical definition
 - Relative frequency definition

Classical Definition

- \(P(E) = \frac{m}{N} \)
- If an event can occur in \(N \) equally likely and mutually exclusive ways, and if \(m \) of these ways possess the characteristic \(E \), then the probability of \(E \) is \(\frac{m}{N} \)
Example: Coin toss

- Flip one coin
- Tails and heads equally likely
- $N = 2$ possible events
- Let $H =$ Heads and $T =$ Tails

We are interested in the probability of tails: $P(Tails) = P(T) = \frac{1}{2}$

Relative Frequency Definition

- $P(E) = \frac{m}{n}$
- If an experiment is repeated n times, and characteristic E occurs m of those times, then the relative frequency of E is $\frac{m}{n}$, and it is approximately equal to the probability of E

Example: Multiple coin tosses I

Flip 100 coins

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>T = Tails</td>
<td>53</td>
</tr>
<tr>
<td>H = Heads</td>
<td>47</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

$P(Tails) = P(T) \approx \frac{53}{100} = 0.53 \approx 0.50$

Example: Multiple coin tosses II

What happens if we flip 10,000 coins?

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>T = Tails</td>
<td>5063</td>
</tr>
<tr>
<td>H = Heads</td>
<td>4937</td>
</tr>
<tr>
<td>Total</td>
<td>10000</td>
</tr>
</tbody>
</table>

$P(Tails) = P(T) \approx \frac{5063}{10000} = 0.51 \approx 0.50$
The probability of T is the limit of the relative frequency of T, as the sample size n goes to infinity.

“The long run relative frequency”

Statistical independence

Two events are **statistically independent** if the joint probability of both events occurring is the product of the probabilities of each event occurring:

$$P(A \text{ and } B) = P(A) \times P(B)$$

Example

- Let $A =$ first born child is female
- Let $B =$ second child is female
- $P(A \text{ and } B) =$ probability that first and second children are both female:
- Assuming independence:

$$P(A \text{ and } B) = P(A) \times P(B) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$
“In a study where we are selecting patients at random from a population of interest, we assume that the outcomes we observe are independent...”

In what situations would this assumption be violated?

Mutually exclusive

- Two events are mutually exclusive if the joint probability of both events occurring is 0:
 \[P(A \text{ and } B) = 0 \]

- Ex: A = first child is female, B = first child is male

ASIDE: Independence and Mutual exclusivity aren’t the same

- Two events are independent if the joint probability of both events occurring is the product of the probabilities of each event occurring:
 \[P(A \text{ and } B) = P(A) \times P(B) \]

- Two events are mutually exclusive if the joint probability of both events occurring is 0:
 \[P(A \text{ and } B) = 0 \]

- So the events A and B are both mutually exclusive AND independent only when \(P(A) = 0 \) or \(P(B) = 0 \).

Probability rules

1. The probability of any event is non-negative, and no greater than 1:
 \[0 \leq P(E) \leq 1 \]
2. Given \(n \) mutually exclusive events, \(E_1, E_2, \ldots, E_n \) covering the sample space, the sum of the probabilities of events is 1:
 \[\sum_{i=1}^{n} P(E_i) = P(E_1) + P(E_2) + \cdots + P(E_n) = 1 \]
3. If \(E_i \) and \(E_j \) are mutually exclusive events, then the probability that either \(E_i \) or \(E_j \) occur is:
 \[P(E_i \cup E_j) = P(E_i) + P(E_j) \]
Set notation

- A set is a group of disjoint objects
- An element of a set is an object in the set
- The union of two sets, A and B, is a larger set that contains all elements in either A, B or both
 Notation: \(A \cup B \)
- The intersection of two sets, A and B, is the set containing all elements found in both A and B
 Notation: \(A \cap B \)

The addition rule

If two events, A and B, are not mutually exclusive, then the probability that event A or event B occurs is:
\[
P(A \cup B) = P(A) + P(B) - P(A \cap B)
\]
where \(P(A \cap B) \) is the probability that both events occur

The multiplication rule

- In general:
 \[
P(A \cap B) = P(B) \times P(A|B)
 \]
- When events A and B are independent, \(P(A|B) = P(A) \) and:
 \[
P(A \cap B) = P(A) \times P(B)
 \]
Bayes rule

- Useful for computing $P(B|A)$ if $P(A|B)$ and $P(A|B^c)$ are known
- Ex: Screening
 - We know $P(\text{test positive} \mid \text{true positive})$
 - We want $P(\text{true positive} \mid \text{test positive})$
- Ex: Bayesian statistics uses assumptions about $P(\text{data} \mid \text{state of the world})$ to derive statements about $P(\text{state of the world} \mid \text{data})$

- The rule:

 $$P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A|B) \cdot P(B) + P(A|B^c) \cdot P(B^c)}$$

 where B^c denotes “the complement of B” or “not B”

Example: Sex and Age I

<table>
<thead>
<tr>
<th>Age</th>
<th>Young (B_1)</th>
<th>Older (B_2)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (A_1)</td>
<td>30</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>Female (A_2)</td>
<td>40</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

$P(A_1) = P(\text{male}) = \frac{50}{100} = 0.5$

$P(A_2) = P(\text{female}) = \frac{50}{100} = 0.5$

$P(B_1) = P(\text{young}) = \frac{70}{100} = 0.7$

$P(B_2) = P(\text{older}) = \frac{30}{100} = 0.3$

Example: Sex and Age II

<table>
<thead>
<tr>
<th>Age</th>
<th>Young (B_1)</th>
<th>Older (B_2)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (A_1)</td>
<td>30</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>Female (A_2)</td>
<td>40</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

$A_1 = \{\text{all males}\}$, $A_2 = \{\text{all females}\}$

$B_1 = \{\text{all young}\}$, $B_2 = \{\text{all older}\}$

$A_1 \cup A_2 = \{\text{all people}\} = B_1 \cup B_2$

$A_1 \cap A_2 = \{\text{no people}\} = \emptyset = B_1 \cap B_2$

$A_1 \cup B_1 = \{\text{male or young}\}$

$A_1 \cup B_2 = \{\text{male or old}\}$

$A_2 \cap B_2 = \{\text{female and old}\}$
Example: Sex and Age IV

<table>
<thead>
<tr>
<th>Age</th>
<th>Young (B_1)</th>
<th>Older (B_2)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (A_1)</td>
<td>30</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>Female (A_2)</td>
<td>40</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

\[
P(A_2 \cap B_2) = P(\text{older and female}) = \frac{10}{100} = 0.1
\]

\[
P(A_1 \cup B_1) = P(\text{young or male})
\]

\[
= P(A_1) + P(B_1) - P(A_1 \cap B_1)
\]

\[
= \frac{50}{100} + \frac{70}{100} - \frac{30}{100}
\]

\[
= \frac{90}{100} = 0.9
\]

Example: Sex and Age V

<table>
<thead>
<tr>
<th>Age</th>
<th>Young (B_1)</th>
<th>Older (B_2)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (A_1)</td>
<td>30</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>Female (A_2)</td>
<td>40</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

\[
P(B_2|A_2) = P(\text{older|female})
= \frac{P(B_2 \cap A_2)}{P(A_2)} = \frac{10/100}{50/100} = \frac{10}{50} = 0.2
\]

\[
P(B_2|A_1) = P(\text{older|male})
= \frac{P(B_2 \cap A_1)}{P(A_1)} = \frac{20/100}{50/100} = \frac{20}{50} = 0.4
\]

\[
P(B_2) = P(\text{older}) = \frac{30}{100} = 0.3
\]

Example: Sex and Age VI

\[
P(B_2|A_2) \neq P(B_2|A_1) \neq P(B_2)
\]

→ In this group, sex and age are not independent

Example: Sex and Age VII

<table>
<thead>
<tr>
<th>Age</th>
<th>Young (B_1)</th>
<th>Older (B_2)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (A_1)</td>
<td>30</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>Female (A_2)</td>
<td>40</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td>30</td>
<td>100</td>
</tr>
</tbody>
</table>

Try these on your own...

\[
P(A_1 \cup A_2) =
\]

\[
P(B_1 \cup B_2) =
\]

\[
P(A_2|B_2) =
\]
Example: Blood Groups I

<table>
<thead>
<tr>
<th>Blood group</th>
<th>Sex</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>O</td>
<td>113</td>
<td>170</td>
</tr>
<tr>
<td>A</td>
<td>103</td>
<td>155</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
<td>37</td>
</tr>
<tr>
<td>AB</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>251</td>
<td>377</td>
</tr>
</tbody>
</table>

Example: Blood Groups II

\[
P(\text{male}) = 1 - P(\text{female}) = \frac{251}{628} \approx 0.4
\]

\[
P(O) = \frac{283}{628} \approx 0.45
\]

\[
P(A) = \frac{258}{628} \approx 0.41
\]

\[
P(B) = \frac{62}{628} \approx 0.10
\]

\[
P(AB) = \frac{25}{628} \approx 0.04
\]

Example: Blood Groups III

Question: Are sex and blood group independent?

\[
P(O|\text{male}) = \frac{113}{251} \approx 0.45
\]

\[
P(O|\text{female}) = \frac{170}{377} \approx 0.45
\]

same as \(P(O) = \frac{283}{628} \approx 0.45\)

Can show same equalities for all blood types

→ Yes, sex and blood group appear to be independent of each other in this sample

Example: Disease in the population

- For patients with Disease X, suppose we knew the age proportions per sex, as well as the sex distribution.
- Question: Could we compute the sex proportions in each age group (young / older)?
- Answer: Use Bayes Rule

- \(A_1 = \{\text{males}\}, A_2 = \{\text{females}\}\)
- \(B_1 = \{\text{young}\}, B_2 = \{\text{older}\}\)

\[
P(A_1) = P(A_2) = 0.5
\]

\[
P(B_1 | A_2) = 0.2
\]

\[
P(B_2 | A_1) = 0.4
\]

\[
P(A_2 | B_2) = \frac{P(B_2 | A_2) \cdot P(A_2)}{P(B_2 | A_2) \cdot P(A_2) + P(B_2 | A_1) \cdot P(A_1)}
\]
Probability Distributions

- Often, we assume a true underlying distribution
 - Ex: $P(\text{tails}) = \frac{1}{2}$, $P(\text{heads}) = \frac{1}{2}$
- This distribution is characterized by a mathematical formula and a set of possible outcomes
- Two types of distributions:
 - Discrete
 - Continuous

Commonly Used Distributions

Discrete
- Binomial – two possible outcomes
 - Underlies much of statistical applications to epidemiology
 - Basic model for logistic regression
- Poisson – uses counts of events at rates
 - Basis for log-linear models

Continuous
- Normal – bell shaped curve
 - Many characteristics are normally distributed or approximately normally distributed
 - Basic model for linear regression
- Exponential – useful in describing growth

Counting techniques

- **Factorials**: count the number of ways to arrange things
- **Permutations**: count the number of possible ordered arrangements of subsets of a given size
- **Combinations**: count the number of possible unordered arrangements of subsets of a given size

Factorials

- Notation: $n!$ (“n factorial”)
- Number of possible arrangements of n objects
- $n! = n(n-1)(n-2)(n-3) \cdots (3)(2)(1)$
- Standard convention: $0! = 1$
The number of ways you can take r objects from a total of n objects when order matters

$$nP_r = \frac{n!}{(n-r)!} = \frac{n(n-1)\cdots(n-r+1)(n-r)\cdots1}{(n-r)(n-r-1)\cdots1} = n(n-1)(n-2)\cdots(n-r+1)$$

The number of ways you can take r objects from a total of n objects when order doesn’t matter

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

For example:

$$\binom{4}{2} = \frac{4!}{2!(4-2)!} = \frac{4 \cdot 3 \cdot 2 \cdot 1}{2! \cdot 2!} = \frac{12}{2} = 6$$

Note: the number of combinations is less than or equal to the number of permutations.

You’ve seen it before:
- 2 x 2 tables and applications
- Proportions: CIs and tests
- Sensitivity and Specificity
- Odds ratio and relative risk
- Logistic regression

Bernoulli trial model
- The study of experiment consists of n smaller experiments (trials) each of which has only two possible outcomes
 - Dead or alive
 - Success of failure
 - Diseased, not diseased
- The outcomes of the trials are independent
- The probabilities of the outcomes of the trial remain the same from trial to trial
Binomial Distribution Function

The probability of obtaining x “successes” in n Bernoulli trials is:

\[P(X = x) = \binom{n}{x} p^x (1 - p)^{n-x} \]

where:
- \(p \) = probability of a “success
- \(q = 1-p \) = probability of “failure”
- \(X \) is a random variable
- \(x \) is a particular number

Example: Binomial (n=2) I

What is the probability, in a random sample of size 2, of observing 0, 1, or 2 heads?

<table>
<thead>
<tr>
<th># heads</th>
<th>Possible outcome</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>HH</td>
<td>(p \cdot p = p^2)</td>
</tr>
<tr>
<td>1</td>
<td>HT</td>
<td>(p \cdot q)</td>
</tr>
<tr>
<td>1</td>
<td>TH</td>
<td>(q \cdot p)</td>
</tr>
<tr>
<td>0</td>
<td>TT</td>
<td>(q \cdot q = q^2)</td>
</tr>
</tbody>
</table>

Example: Binomial (n=2) II

Recall \(x \) = number of observed heads

\[P(X = x) = \binom{n}{x} p^x (1 - p)^{n-x} \]

\[
egin{align*}
P(X = 0) &= \binom{2}{0} (0.5)^0 (0.5)^2 = 0 \\
&= 0.25 = q^2
\end{align*}
\]

Example: Binomial (n=2) III

\[P(X = 1) = \binom{2}{1} (0.5)^1 (0.5)^2 - 1 \]

\[
egin{align*}
&= \frac{2!}{1!(2 - 1)!} (0.5)(0.5) \\
&= 2(0.5)(0.5) = 0.5 = 2 \cdot p \cdot q
\end{align*}
\]

\[P(X = 2) = \binom{2}{2} (0.5)^2 (0.5)^0 \]

\[
egin{align*}
&= \frac{2!}{2!(2 - 2)!} (0.5)^2 (0.5)^0 \\
&= 0.25 = p^2
\end{align*}
\]
Example: Binomial (n=3) I

<table>
<thead>
<tr>
<th># successes</th>
<th>Samples</th>
<th>P(X=x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>{+++}</td>
<td>(_{3}^{3}p^3q^0 = p^3)</td>
</tr>
<tr>
<td>2</td>
<td>{++-, +++, -++}</td>
<td>(_{3}^{2}p^2q = 3p^2q)</td>
</tr>
<tr>
<td>1 Nov</td>
<td>{-+-, -+-, --+}</td>
<td>(_{3}^{1}pq^2 = 3pq^2)</td>
</tr>
<tr>
<td>0</td>
<td>{---}</td>
<td>(_{3}^{0}p^0q^3 = q^3)</td>
</tr>
</tbody>
</table>

Example: Binomial (n=3) II

Since \(X\) takes discrete values only:

\[
P(X \leq 1) = P(X = 0) + P(X = 1) \\
P(X < 1) = P(X = 0) \\
P(X > 2) = P(X = 3) \\
P(1 \leq X \leq 2) = P(X = 1) + P(X = 2) \\
P(X \geq 1) = P(X = 1) + P(X = 2) + P(X = 3) = 1 - P(X = 0)
\]

Example: Binomial (n=3) III

The probability that a person suffering from a head cold will obtain relief with a particular drug is 0.9. Three randomly selected sufferers from the cold are given the drug.

- \(p = 0.9\)
- \(q = 1-p = 0.1\)
- \(n = 3\)

Example: Binomial (n=3) IV

\(2^3 = 8\) possible outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>S S S</td>
<td>ppp</td>
</tr>
<tr>
<td>S S F</td>
<td>ppq</td>
</tr>
<tr>
<td>S F S</td>
<td>pqq</td>
</tr>
<tr>
<td>F S S</td>
<td>qpp</td>
</tr>
<tr>
<td>F F S</td>
<td>qpp</td>
</tr>
<tr>
<td>F S F</td>
<td>qpp</td>
</tr>
<tr>
<td>S F F</td>
<td>pqq</td>
</tr>
<tr>
<td>F F F</td>
<td>qqq</td>
</tr>
</tbody>
</table>
Example: Binomial (n=3) V

Probability exactly zero (none) obtain relief:

\[P(X = 0) = \binom{3}{0} p^0 q^3 = q^3 \]
\[= (0.1)^3 = 0.001 \]

Probability exactly one obtains relief:

\[P(X = 1) = \binom{3}{1} p^1 q^2 \]
\[= \frac{3!}{1!2!} p q^2 = \frac{3 \cdot 2!}{1 \cdot 2!} p q^2 = 3pq^2 \]
\[= 3(0.9)(0.1)^2 = 0.027 \]

Example: Bernoulli Distribution

Let \(X = 1 \) with probability \(p \), and 0 otherwise

Calculation of the mean:

\[E(X) = \mu = \sum_{i=0,1} x_i P(X = x_i) = 1 \cdot p + 0 \cdot (1 - p) = p \]

Calculation of the variance:

\[E(X^2) = (1^2) \cdot p + (0^2) \cdot (1 - p) = p \]
\[Var(X) = E(X^2) - \mu^2 = p - p^2 = p \cdot (1 - p) \]

Mean and Variance

Mean of a random variable (r.v.) \(X \)

- Expected value, expectation
- \(\mu = E(X) \)
- \(\sum_i x_i P(X = x_i) \) for discrete r.v.
- \(\int_{-\infty}^{+\infty} x \cdot f(x) \, dx \) for continuous r.v.

Variance of a random variable, \(X \)

- \(\sigma^2 = Var(X) = E(X - \mu)^2 = E(X^2) - \mu^2 \)
- The standard deviation \(\sigma = \sqrt{\sigma^2} = \sqrt{Var(X)} \)

Properties of Expectation

1. \(E(c) = c \) where \(c \) is a constant
2. \(E(c \cdot X) = c \cdot E(X) \)
3. \(E(X_1 + X_2) = E(X_1) + E(X_2) \)
Properties of Variance

1. \(\text{Var}(c) = 0 \) where \(c \) is a constant
2. \(\text{Var}(c \cdot X) = c^2 \cdot \text{Var}(X) \)
3. \(\text{Var}(X_1 + X_2) = \text{Var}(X_1) + \text{Var}(X_2) \) if \(X_1 \) and \(X_2 \) are independent

Binomial Mean and Variance

- \(S \) is Binomial \((n, p)\), so...
- \(S = \sum_{i=1}^{n} X_i \) where \(X_i \) are independent Bernoulli\((p)\) random variables
- \(E(S) = \sum_{i=1}^{n} E(X_i) = \sum_{i=1}^{n} p = np \)
- \(\text{Var}(S) = \sum_{i=1}^{n} \text{Var}(X_i) = \sum_{i=1}^{n} p(1 - p) = np(1 - p) \)

Poisson Distribution

- Describes occurrences or objects which are distributed randomly in space or time
- Often used to describe distribution of the number of occurrences of a rare event
- Underlying assumptions similar to those for binomial distribution
- Useful when there are counts with no denominator

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Parameters needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial</td>
<td>(n, p)</td>
</tr>
<tr>
<td>Poisson</td>
<td>(\lambda = np)</td>
</tr>
<tr>
<td></td>
<td>= the expected number of events per unit time</td>
</tr>
</tbody>
</table>

Poisson Distribution Examples

- Number of Prussian officers killed by horse kicks between 1875 and 1894
- Spatial distribution of stars, weeds, bacteria, flying-bomb strikes
- Emergency room or hospital admissions
- Typographical errors
- Deaths due to a rare disease
Poisson Assumptions

- The occurrences of a random event in an interval of time are independent.
- In theory, an infinite number of occurrences of the event are possible (though perhaps rare) within the interval.
- In any extremely small portion of the interval, the probability of more than one occurrence of the event is approximately zero.

Poisson Probability

- The probability of x occurrence of an event in an interval is:
 \[P(X = x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}, \quad x = 0, 1, 2, \ldots \]
 where λ is the expected number of occurrences in the interval.
- e is a constant (≈ 2.718).
- For the Poisson distribution, mean = variance = λ.

Example: Traffic accidents I

- Suppose the goal has been set of bringing the expected number of traffic accidents per day in Baltimore down to 3. There are 5 fatal accidents today. Has the goal been attained?
- The number of accidents follows a Poisson distribution because:
 - The population that drives in Baltimore is large.
 - The number of accidents is relatively small.
 - People have similar risks of having an accident.
 - The number of people driving each day is fairly stable.
 - The probability of two accidents occurring at exactly the same time is approximately zero.

Example: Traffic accidents II

- We are aiming for a rate of $\lambda = 3$ fatal accidents per day, or lower.
- The observed number is 5.
- $P(X = 5; \lambda = 3) = \frac{e^{-3} \cdot 3^5}{5!} = 0.101$.
- Has the goal been attained?
Example: Suicide in the City

If the rate for a given rare condition is expressed as μ per time period, the expected number of events is μt where t is the time period.

Some questions we can answer using the properties of the Poisson distribution are:

- Suppose the weekly rate of suicide in a large city is 2. What is the probability of one suicide in a given week?

 $P(X = 1; \lambda = 2)$

- What is the probability of 2 suicides in 2 weeks?

- Since the weekly rate of suicide was 2/week, we expect 2×2 or 4 suicides per 2 week period.

- You can use the poisson distribution to calculate $P(X = 2; \lambda = 4)$

Example: Cancer in a large population

Yearly cases of esophageal cancer in a large city; 30 cases observed in 1990

$P(X = 30) = \frac{e^{-\lambda} \lambda^{30}}{30!}$

where $\lambda =$ yearly average number of cases of esophageal cancer

Example: Down’s syndrome I

The incidence of Down’s syndrome as a function of mother’s age

The Poisson distribution can be used to approximate a Binomial(n,p) distribution when:

- n is large and p is very small, or
- $np = \lambda$ is fixed, and n becomes infinitely large
Example: Down’s syndrome II

- Suppose the incidence of Down’s syndrome in 40-year-old mothers is 1/100
- Out of 25 babies born to 40-year-old women, what is the frequency of babies with Down’s syndrome?
- We can approach this problem using a Binomial(25, 1/100) model, or using a Poisson($\lambda = 0.25$) model

Example: Down’s syndrome III

<table>
<thead>
<tr>
<th>Babies with Down’s Syndrome</th>
<th>$P(X=x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Poisson</td>
</tr>
<tr>
<td>0</td>
<td>0.779</td>
</tr>
<tr>
<td>1</td>
<td>0.195</td>
</tr>
<tr>
<td>2</td>
<td>0.024</td>
</tr>
<tr>
<td>>2</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Note: the approximation becomes even better for larger values of n.

Lecture 2 Summary

We’ve covered a lot of ground this lecture. Here’s a quick summary of what we just discussed:

- Probability
 - Commonly used definitions and properties including: independence, mutually exclusive, addition rule, conditional probability, the multiplication rule and Bayes rule
- Discrete distributions
 - Binomial and Poisson

Tomorrow we’ll discuss the Normal distribution, the Central Limit Theorem, the t-distribution and confidence intervals.