Solution to Ordinary and Universal Kriging Equations

Meredith Franklin
February 6, 2014

1 Lagrange Multipliers

Lagrange multipliers are used for finding the maxima/minima of multivariate functions that are subject to a constraint. The function \(f(x_1, x_2, ..., x_n) \) and constraint \(g(x_1, x_2, ..., x_n) = 0 \) are continuous, have continuous first partial derivatives and \(\nabla g \neq 0 \). The two functions meet where their tangent lines are parallel. This is equivalent to saying that \(f \) and \(g \) meet when their gradients are parallel (since the gradient of a function is perpendicular to the function). Thus, \(\nabla f = -\lambda \nabla g \), where the constant \(\lambda \) is called the Lagrange multiplier. The extremum is found by solving the \(n+1 \) gradient equations (extremum are when all partials are set equal to 0). For example:

\[
\begin{align*}
\text{Minimize} \quad & L(x, y, \lambda) = x^2 + y^2 + \lambda (x^2 y - 16) \\
\text{Subject to} \quad & g(x, y) = x^2 y - 16 = 0
\end{align*}
\]

Equation (1) gives \(2x(1 + \lambda y) = 0 \) which requires \(x = 0 \) or \(y = -1/\lambda \). Equation (2) gives \(x^2 = -2y/\lambda \). When plugged back into the constraint equation, we find \(\lambda = 2 \). Thus the minima under the constraint \(g = 0 \) occurs when \(y = 1/2 \) and \(x = 1/\sqrt{2} \).

2 Ordinary Kriging Equations

Given spatial data \(Z(s_i) \) that follows an intrinsically stationary process, i.e. having constant unknown mean \(\mu \), known spatial covariance function \(C(h) \) for spatial lags \(h = s_i - s_j \), and can be written as \(Z(s_i) = \mu + \epsilon(s_i) \), we typically want to predict values of the
process at unobserved locations, \(s_0 \in D \). Kriging is a method that enables prediction of a spatial process based on a weighted average of the observations. In the case of an intrinsically stationary process with constant unknown mean, we use the ordinary kriging (OK) method.

\[
\hat{Z}(s_0) = \sum_{i=1}^{N} \omega_i Z(s_i) \quad (4)
\]

We want to find the best linear unbiased predictor (BLUP) by minimizing the variance of the interpolation error (i.e. minimize mean square prediction error), \(\text{Var}(\hat{Z}(s_0) - Z(s_0)) = E[(\hat{Z}(s_0) - Z(s_0))^2] \). For the predictor to be unbiased, \(E[\hat{Z}(s_0)] = E[Z(s_0)] = \mu \) is required. Given (4) this means:

\[
E[\hat{Z}(s_0)] - E[Z(s_0)] = E[\sum_{i=1}^{N} \omega_i Z(s_i)] - E[Z(s_0)]
\]
\[
= \sum_{i=1}^{N} \omega_i E[Z(s_i)] - E[Z(s_0)]
\]
\[
= \sum_{i=1}^{N} \omega_i \mu - \mu
\]
\[
= \mu \left(\sum_{i=1}^{N} \omega_i - 1 \right)
\]

Thus \(\sum_{i=1}^{N} \omega_i = 1 \) for unbiasedness to hold and we have a minimization problem with a constraint that can be solved using Lagrange multipliers. We minimize

\[
L(\omega_i, \lambda) = E[(\hat{Z}(s_0) - Z(s_0))^2] + 2\lambda \left(\sum_{i=1}^{N} \omega_i - 1 \right)
\]
\[
= \text{Var}[\sum_{i=1}^{N} \omega_i Z(s_i)] + \text{Var}[Z(s_0)] - 2\text{Cov}[\sum_{i=1}^{N} \omega_i Z(s_i), Z(s_0)] + 2\lambda \left(\sum_{i=1}^{N} \omega_i - 1 \right)
\]
\[
= \sum_{i=1}^{N} \sum_{j=1}^{N} \omega_i \omega_j \text{Cov}[Z(s_i), Z(s_j)] + \text{Var}[Z(s_0)] - 2 \sum_{i=1}^{N} \omega_i \text{Cov}[Z(s_i), Z(s_0)] + 2\lambda \left(\sum_{i=1}^{N} \omega_i - 1 \right)
\]

Recall the variance of a linear combination \(\text{Var}[\sum_{i=1}^{N} \omega_i Z(s_i)] \) is \(\sum_{i=1}^{N} \sum_{j=1}^{N} \omega_i \omega_j \text{Cov}[Z(s_i), Z(s_j)] \)

Differentiate with respect to \(\omega_i \) and \(\lambda \) and set equal to 0

\[
\frac{\partial L(\omega_i, \lambda)}{\partial \omega_i} = 2 \sum_{j=1}^{N} \omega_j \text{Cov}[Z(s_i), Z(s_j)] - 2\text{Cov}[Z(s_i), Z(s_0)] + 2\lambda = 0
\]
Which gives:
\[\sum_{j=1}^{N} \omega_j \text{Cov}[Z(s_i), Z(s_j)] + \lambda = \text{Cov}[Z(s_i), Z(s_0)] \]

And
\[\frac{\partial L(\omega, \lambda)}{\partial \lambda} = 2 \sum_{i=1}^{N} \omega_i - 2 = 0 \]

Which gives:
\[\sum_{i=1}^{N} \omega_i = 1 \]

In matrix notation, this can be written as
\[Cw = D \]

Where \(C \) is the covariance matrix of the observed values and the row and column for the constraint, \(w \) is the vector of weights and the Lagrange multiplier, and \(D \) is the vector of covariances at the prediction location. Solving for the weights,
\[w = C^{-1}D \]

We see that \(C \) only needs to be calculated (and inverted) once but \(D \) is found for every prediction location. The inversion operation can be quite computationally intensive for large \(N \). With the weights we can solve for expected value at the new location
\[\hat{Z}(s_0) = \sum_{i=1}^{N} \omega_i Z(s_i) \]

The variance of the prediction is found via the MSE:
\[MSE = \sum_{i=1}^{N} \sum_{j=1}^{N} \omega_i \omega_j \text{Cov}[Z(s_i), Z(s_j)] + \text{Var}[Z(s_0)] - 2\text{Cov}\left[\sum_{i=1}^{N} \omega_i Z(s_i), Z(s_0) \right] \]

Where
\[\sum_{i=1}^{N} \sum_{j=1}^{N} \omega_i \omega_j \text{Cov}[Z(s_i), Z(s_j)] = \sum_{i=1}^{N} \omega_i \sum_{j=1}^{N} \omega_j \text{Cov}[Z(s_i), Z(s_j)] \]
\[= \sum_{i=1}^{N} \omega_i (\text{Cov}[Z(s_i), Z(s_0)] - \lambda) \]
So, the MSE gives us the ordinary kriging variance,

\[\sigma_{OK}^2 = \sigma^2 - \sum_{i=1}^{N} \omega_i (\text{Cov}[Z(s_i), Z(s_0)] - \lambda) \]

Which in matrix form is

\[\sigma_{OK}^2 = \sigma^2 - \mathbf{w}' \mathbf{D} \]

3 Universal Kriging Equations

When we do not have a constant unknown mean \(\mu \) in our spatial process, we must expand the above approach to account for a variable mean (i.e. linear or polynomial trend, spatially varying covariates) when making kriging predictions. For example we can define a spatial regression model, \(Z(s) \sim \text{MVN}(X\beta, \Sigma) \) where under instrinsic stationarity, \(\Sigma \) is our spatial covariance function \(C(h) \) for spatial lags \(h = s_i - s_j \). \(X\beta \) represent the \(k = 1, \ldots, p \) covariates. Another way of expressing the model is \(Z(s_i) = \mu(s_i) + \epsilon(s_i) \) where

\[
\mu(s_i) = \sum_{k=1}^{p} \beta_k x_k(s_i)
\]

As above, we wish to find the BLUP, where we (4) becomes

\[
\hat{Z}(s_0) = \sum_{i=1}^{N} \omega_i \sum_{k=1}^{p} \beta_k x_k(s_i)
\]

\[
E[\hat{Z}(s_0)] - E[Z(s_0)] = E[\sum_{i=1}^{N} \omega_i \sum_{k=1}^{p} \beta_k x_k(s_i)] - \sum_{k=1}^{p} \beta_k x_k(s_0)
\]

\[
= \sum_{i=1}^{N} \omega_i \sum_{k=1}^{p} E[\beta_k x_k(s_i)] - \sum_{k=1}^{p} \beta_k x_k(s_0)
\]

We require

\[
\sum_{i=1}^{N} \omega_i = 1
\]

\[
\sum_{i=1}^{N} \omega_i x_k(s_i) = x_k(s_0), k = 1, \ldots, (p-1)
\]

So there are \(p \) constraints in our minimization problem (sum of weights is equal to 1 and the \(p-1 \) covariates). We apply the same method as above with Lagrange multipliers \(\lambda_k \). Minimize:

\[
L(\omega, \lambda) = E[(\hat{Z}(s_0) - Z(s_0))^2] + 2 \sum_{k=1}^{p} \lambda_k (\sum_{i=1}^{N} \omega_i x_k(s_i) - 1)
\]
As above, we obtain the result \(\mathbf{w}^* = \mathbf{C}^{*-1} \mathbf{D}^* \) which expands to:

\[
\begin{pmatrix}
\omega_1 \\
\omega_2 \\
\vdots \\
\omega_N
\end{pmatrix} =
\begin{bmatrix}
\begin{array}{cccc}
C_{11} & C_{12} & \cdots & C_{1N} \\
C_{21} & C_{22} & \cdots & C_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
C_{N1} & C_{N2} & \cdots & C_{NN}
\end{array}
\end{bmatrix}^{-1} \begin{bmatrix}
\begin{array}{c}
x_{11} \\
x_{12} \\
\vdots \\
x_{p1}
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
x_{11} \\
x_{12} \\
\vdots \\
x_{p1}
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
x_{21} \\
x_{22} \\
\vdots \\
x_{p2}
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
x_{N1} \\
x_{N2} \\
\vdots \\
x_{pN}
\end{array}
\end{bmatrix}
\begin{bmatrix}
\begin{array}{c}
x_0 \\
x_0 \\
\vdots \\
x_0
\end{array}
\end{bmatrix}
\]

And the universal kriging variance is represented by

\[
\sigma_{UK}^2 = \sigma^2 - \mathbf{w}^*/\mathbf{D}^*
\]